Thursday, June 9, 2011

Android Code Style

Android follow standard Java coding conventions. We add a few rules:
  1. Exceptions: Never catch and ignore them without explanation.
  2. Exceptions: do not catch generic Exception, except in library code at the root of the stack.
  3. Finalizers: generally don't use them.
  4. Imports: Fully qualify imports.

1.Exceptions: do not ignore:

Never do this.Never write code that completely ignores an exception like this:

void setServerPort(String value) {
    try {
        serverPort = Integer.parseInt(value);
    } catch (NumberFormatException e) { }

  • Throw the exception up to the caller of your method.
void setServerPort(String value) throws NumberFormatException {
    serverPort = Integer.parseInt(value);  }
  • Throw a new exception that's appropriate to your level of abstraction.
void setServerPort(String value) throws ConfigurationException {
    try {
        serverPort = Integer.parseInt(value);
    } catch (NumberFormatException e) {
        throw new ConfigurationException("Port " + value + " is not valid.");
Handle the error gracefully and substitute an appropriate value in the catch {} block.

/** Set port. If value is not a valid number, 80 is substituted. */
void setServerPort(String value) {
    try {
        serverPort = Integer.parseInt(value);
    } catch (NumberFormatException e) {
        serverPort = 80;  // default port for server 
If you are confident that actually ignoring the exception is appropriate then you may ignore it, but you must also comment why with a good reason:

/** If value is not a valid number, original port number is used. */
void setServerPort(String value) {
    try {
        serverPort = Integer.parseInt(value);
    } catch (NumberFormatException e) {
        // Method is documented to just ignore invalid user input.
        // serverPort will just be unchanged.

2.Don't Use Finalizers

3.Fully Qualify Imports
There are two possible ways to import it:
  1. import foo.*;
  2. import*;
2 reduces the number of import statements.It makes code more readable for maintainers.
Every file should have a copyright statement at the top. Then a package statement and import statements should follow, each block separated by a blank line. And then there is the class or interface declaration. In the Javadoc comments, describe what the class or interface does.
 * Copyright (C) 2010 The Android Open Source Project 


import android.os.Blah;
import android.view.Yada;

import java.sql.ResultSet;
import java.sql.SQLException;

 * Does X and Y and provides an abstraction for Z.
public class Foo {
Every class and nontrivial public method you write must contain a Javadoc comment with at least one sentence describing what the class or method does. This sentence should start with a 3rd person descriptive verb. Examples:

/** Returns the correctly rounded positive square root of a double value. */
static double sqrt(double a) {

 * Constructs a new String by converting the specified array of 
 * bytes using the platform's default character encoding.
public String(byte[] bytes) {
Every method you write, whether public or otherwise, would benefit from Javadoc. Public methods are part of an API and therefore require Javadoc.

Short methods
To the extent that it is feasible, methods should be kept small and focused. It is, however, recognized that long methods are sometimes appropriate, so no hard limit is placed on method length. If a method exceeds 40 lines or so, think about whether it can be broken up without harming the structure of the program.
Define Fields in Standard Places
Fields should be defined either at the top of the file, or immediately before the methods that use them.

Local variables

The scope of local variables should be kept to a minimum (Effective Java Item 29). By doing so, you increase the readability and maintainability of your code and reduce the likelihood of error. Each variable should be declared in the innermost block that encloses all uses of the variable.
Local variables should be declared at the point they are first used. Nearly every local variable declaration should contain an initializer. If you don't yet have enough information to initialize a variable sensibly, you should postpone the declaration until you do.
One exception to this rule concerns try-catch statements. If a variable is initialized with the return value of a method that throws a checked exception, it must be initialized inside a try block. If the value must be used outside of the try block, then it must be declared before the try block, where it cannot yet be sensibly initialized:
// Instantiate class cl, which represents some sort of Set 
Set s = null;
try {
    s = (Set) cl.newInstance();
} catch(IllegalAccessException e) {
    throw new IllegalArgumentException(cl + " not accessible");
} catch(InstantiationException e) {
    throw new IllegalArgumentException(cl + " not instantiable");

// Exercise the set 
But even this case can be avoided by encapsulating the try-catch block in a method:
Set createSet(Class cl) {
    // Instantiate class cl, which represents some sort of Set 
    try {
        return (Set) cl.newInstance();
    } catch(IllegalAccessException e) {
        throw new IllegalArgumentException(cl + " not accessible");
    } catch(InstantiationException e) {
        throw new IllegalArgumentException(cl + " not instantiable");


// Exercise the set 
Set s = createSet(cl);
Loop variables should be declared in the for statement itself unless there is a compelling reason to do otherwise:
for (int i = 0; i n; i++) {

for (Iterator i = c.iterator(); i.hasNext(); ) {


The ordering of import statements is:
  1. Android imports
  2. Imports from third parties (com, junit, net, org)
  3. java and javax
To exactly match the IDE settings, the imports should be:
  • Alphabetical within each grouping.
  • Capital letters are considered to come before lower case letter (e.g. Z before a).
  • There should be a blank line between each major grouping (android, com, junit, net, org, java, javax).


Originally there was no style requirement on the ordering. This meant that the IDE's were either always changing the ordering, or IDE developers had to disable the automatic import management features and maintain the imports by hand. This was deemed bad. When java-style was asked, the preferred styles were all over the map. It pretty much came down to our needing to "pick an ordering and be consistent." So we chose a style, updated the style guide, and made the IDEs obey it. We expect that as IDE users work on the code, the imports in all of the packages will end up matching this pattern without any extra engineering effort.
The style chosen such that:
  • The imports people want to look at first tend to be at the top (android)
  • The imports people want to look at least tend to be at the bottom (java)
  • Humans can easily follow the style
  • The IDE's can follow the style

What about static imports?

The use and location of static imports have been mildly controversial issues. Some people would prefer static imports to be interspersed with the remaining imports, some would prefer them reside above or below all other imports. Additinally, we have not yet come up with a way to make all IDEs use the same ordering.
Since most people consider this a low priority issue, just use your judgement and please be consistent.


We use 4 space indents for blocks. We never use tabs. When in doubt, be consistent with code around you.
We use 8 space indents for line wraps, including function calls and assignments. For example, this is correct:
Instrument i =
        someLongExpression(that, wouldNotFit, on, one, line);
and this is not correct:
Instrument i =
    someLongExpression(that, wouldNotFit, on, one, line);

Field Names

  • Non-public, non-static field names start with m.
  • Static field names start with s.
  • Other fields start with a lower case letter.
  • Public static final fields (constants) are ALL_CAPS_WITH_UNDERSCORES.
public class MyClass {
    public static final int SOME_CONSTANT = 42;
    public int publicField;
    private static MyClass sSingleton;
    int mPackagePrivate;
    private int mPrivate;
    protected int mProtected;


class MyClass {
    int func() {
        if (something) {
            // ...
        } else if (somethingElse) {
            // ...
        } else {
            // ...
We require braces around the statements for a conditional. Except, if the entire conditional (the condition and the body) fit on one line, you may (but are not obligated to) put it all on one line. That is, this is legal:

if (condition) {
    body(); // ok 
if (condition) body(); // ok
but this is still illegal:
if (condition)
    body(); // bad

Line length

Each line of text in your code should be at most 100 characters long.
There has been lots of discussion about this rule and the decision remains that 100 characters is the maximum.
Exception: if a comment line contains an example command or a literal URL longer than 100 characters, that line may be longer than 100 characters for ease of cut and paste.
Exception: import lines can go over the limit because humans rarely see them. This also simplifies tool writing.

Java 1.5 Annotations

Annotations should precede other modifiers for the same language element. Simple marker annotations (e.g. @Override) can be listed on the same line with the language element. If there are multiple annotations, or parameterized annotations, they should each be listed one-per-line in alphabetical order.
Android -standard practices for the three predefined annotations in Java 1.5's are:


The @Deprecated annotation must be used whenever the use of the annotated element is discouraged. If you use the @Deprecated annotation, you must also have a @deprecated Javadoc tag and it should name an alternate implementation. In addition, remember that a @Deprecated method is still supposed to work.
If you see old code that has a @deprecated Javadoc tag, please add the @Deprecated annotation.


The @Override annotation must be used whenever a method overrides the declaration or implementation from a super-class.
For example, if you use the @inheritdocs Javadoc tag, and derive from a class (not an interface), you must also annotate that the method @Overrides the parent class's method.


The @SuppressWarnings annotation should only be used under circumstances where it is impossible to eliminate a warning. If a warning passes this "impossible to eliminate" test, the @SuppressWarnings annotation must be used, so as to ensure that all warnings reflect actual problems in the code.
When a @SuppressWarnings annotation is necessary, it must be prefixed with a TODO comment that explains the "impossible to eliminate" condition. This will normally identify an offending class that has an awkward interface. For example:
// TODO: The third-party class com.third.useful.Utility.rotate() needs generics 
List<String> blix = Utility.rotate(blax);
When a @SuppressWarnings annotation is required, the code should be refactored to isolate the software elements where the annotation applies.

TODO style

Use TODO comments for code that is temporary, a short-term solution, or good-enough but not perfect.
TODOs should include the string TODO in all caps, followed by a colon:
// TODO: Remove this code after the UrlTable2 has been checked in.

// TODO: Change this to use a flag instead of a constant.
f your TODO is of the form "At a future date do something" make sure that you either include a very specific date ("Fix by November 2005") or a very specific event ("Remove this code after all production mixers understand protocol V7.").


Our parting thought: BE CONSISTENT. If you're editing code, take a few minutes to look at the code around you and determine its style. If they use spaces around their if clauses, you should too. If their comments have little boxes of stars around them, make your comments have little boxes of stars around them too.
The point of having style guidelines is to have a common vocabulary of coding, so people can concentrate on what you're saying, rather than on how you're saying it. We present global style rules here so people know the vocabulary. But local style is also important. If code you add to a a file looks drastically different from the existing code around it, it throws readers out of their rhythm when they go to read it. Try to avoid this.


While logging is necessary it has a significantly negative impact on performance and quickly loses its usefulness if it's not kept reasonably terse. The logging facilities provides five different levels of logging. Below are the different levels and when and how they should be used.
  • ERROR: This level of logging should be used when something fatal has happened, i.e. something that will have user-visible consequences and won't be recoverable without explicitly deleting some data, uninstalling applications, wiping the data partitions or reflashing the entire phone (or worse). This level is always logged. Issues that justify some logging at the ERROR level are typically good candidates to be reported to a statistics-gathering server.
  • WARNING: This level of logging should used when something serious and unexpected happened, i.e. something that will have user-visible consequences but is likely to be recoverable without data loss by performing some explicit action, ranging from waiting or restarting an app all the way to re-downloading a new version of an application or rebooting the device. This level is always logged. Issues that justify some logging at the WARNING level might also be considered for reporting to a statistics-gathering server.
  • INFORMATIVE: This level of logging should used be to note that something interesting to most people happened, i.e. when a situation is detected that is likely to have widespread impact, though isn't necessarily an error. Such a condition should only be logged by a module that reasonably believes that it is the most authoritative in that domain (to avoid duplicate logging by non-authoritative components). This level is always logged.
  • DEBUG: This level of logging should be used to further note what is happening on the device that could be relevant to investigate and debug unexpected behaviors. You should log only what is needed to gather enough information about what is going on about your component. If your debug logs are dominating the log then you probably should be using verbose logging. This level will be logged, even on release builds, and is required to be surrounded by an if (LOCAL_LOG) or if (LOCAL_LOGD) block, where LOCAL_LOG[D] is defined in your class or subcomponent, so that there can exist a possibility to disable all such logging. There must therefore be no active logic in an if (LOCAL_LOG) block. All the string building for the log also needs to be placed inside the if (LOCAL_LOG) block. The logging call should not be re-factored out into a method call if it is going to cause the string building to take place outside of the if (LOCAL_LOG) block. There is some code that still says if (localLOGV). This is considered acceptable as well, although the name is nonstandard.
  • VERBOSE: This level of logging should be used for everything else. This level will only be logged on debug builds and should be surrounded by if (LOCAL_LOGV) block (or equivalent) so that it can be compiled out by default. Any string building will be stripped out of release builds and needs to appear inside the if (LOCAL_LOGV) block.

Naming test methods

When naming test methods, you can use an underscore to seperate what is being tested from the specific case being tested. This style makes it easier to see exactly what cases are being tested.
testMethod_specificCase1 testMethod_specificCase2void testIsDistinguishable_protanopia() {
    ColorMatcher colorMatcher = new ColorMatcher(PROTANOPIA)
    assertFalse(colorMatcher.isDistinguishable(Color.RED, Color.BLACK))
    assertTrue(colorMatcher.isDistinguishable(Color.X, Color.Y))

No comments:

Post a Comment

How TOPT Works: Generating OTPs Without Internet Connection

Introduction Have you ever wondered how authentication apps like RSA Authenticator generate One-Time Passwords (OTPs) without requiring an i...